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20. arbitrary. We are consequently led to a strategy of rejecting the
presence of such confounding processes. We show there is a unique
condition, the spectral crosspoint, that allows rejection of the hypothesis
that measured image intensities arise from one of the confounding processes.
(If plots are made of image intensity versus wavelength from two image regions,
and the plots intersect, we say that there is a spectral crosspoint.)
We restrict our attention to image intensities measured from regions on
opposite sides of an edge because material changes almost always causes edges.
Also, by restricting our attention to luminance discontinuties, we can
avoid peculiar conspiracies of confounding processes that might mimic a
material change. Our crosspoint conjecture is that biological visual systems
interpret spectral crosspoints across edges as aterial changes. A
circularly synmetric operator is designed to detect crosspoints; it turns
out to resemble the double-opponent cell which is commonplace in biological
color vision systems.
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Color Vision and Image Intensities:
When are Changes Material?

John M. Rubin & W. A. Richards

ABSTRACT

-Marr has emphasized the difficulty in understanding a biological system or its components without
some idea of its goals. In this paper, a preliminary goal for color ision is proposed and analyzed. That
goal is to determine where changes of material occur in a scene (using only spectral information). This
goal is challenging for two reasons. First, the effects of many processes (shadowing, shading from sur-
face orientation changes, highlights, variations in pigment density) are confounded with the effects of
material changes in the available image itensities. Second. material changes are essentially arbitrary.
We are consequently led to a strategy of rejecting the presence of such confounding processes. We
show there is a unique condition, the spectral crosspoint, that allows rejection of the hypothesis that
measured image intensities arise from one of the confounding processes. (If plots are made of image
intensity versus wavelength from two image regions, and the plots intersect, we say that there is a
spectral crosspoint.) We restrict our attention to image intensities measured from regions on opposite
sides of an edge because material changes almost always cause edges. Also, by restricting our attention
to luminance discontinuities, we can avoid peculiar conspirliies of confounding processes that might
mimic a material chage. Our crosspoint conjecture is that biological visual systems interpret spectral
crosspoints across edges as material changes. A circularly symmetric operator is designed to detect
crosspoints; it turns out to resemble the double-opponent cell which is commonplace in biological
color vision systems.
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1 Introduction: Why Color Vision?

Color vision, perhaps because of its profound aesthetic value, has been one of the most intensely

studied sensory processes. Consequently, a great deal is known about the transduction and low-level

neural processing of spectral information. Yet there seems to be a dearth of insight into the biological

value of color vision. Why has that capacity evolved independently in species of fish, birds, and

mammals (Walls, 1942)? Color vision apparently affords some advantage to organisms in almost every

(photopic) environment. What is the nature of that advantage?

As Marr (1982) points out, without some idea of the usefulness of color vision, we cannot fully

understand and appreciate the structure of color vision systems. The design of a system will change

according to its goal. Consider a spectrophotometer, for example. It has an ambitious goal, but faces

a simple problem. The purpose of the device is to describe the ratio of reflected light to incident light

on an object as completely as possible over a range of wavelengths. The problem is relatively simple

because illumination and surface orientation are carefully controlled. Humans (and other organisms),

in contrast, must deal with more complicated situations: in general, nothing is known about the

illuminant and the orientation of surfaces. Furthermore, shadows and highlights appear haphazardly

in images. Given the complexities of natural images, achieving the goal of the spectrophotometer

seems a herculean task.

Granted, it is commonly assumed that the goal of human color vision is to extract aspects of the

spectral character of surfaces in order to identify objects such as ripened fruits, moldy bread, rare

roast beef, and so on. This goal is extremely ambitious in light of the confounding factors of shadow

and highlight, surface orientation, and the spectal composition of the illuminant. It would be more

appropriate to propose and to explore an easier objective for biological color vision, at least as a

beginning. To start our analysis, we will consider the modest goal of using spectral information in the

image to find where changes in surface material occur. A change of material is just where one sort

of stuff ends and another begins. Where the yolk stops and white begins in a sunnyside-up egg is an

example of a material change. Although this objective appears limited. it should be attainable if more

complicated goals can be reached. Analysis of this simpler goal will lead to the derivation of a unique

minimal spectral-spatial condition that is reliably associated with material changes.

We therefore propose as our starting point:

An early goal of biological color vision is to detcrminu where changts of matcrial rcur in a icrpi',

using only spectral informiation in ihe image.
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Figure 1. Notation. A) X and Y are two regions in an image. B) The available
information is continuous functions of image intensity versus wavelength, Ix() and
Iy(,), from regions X and Y respectively. C) Discrete representation of this information
is possible by taking a number (here, three) of spectral samples (narrowband in this
illustration, at wavelengths X1. X2 , and K3).

Our goal is thus similar to the one first proposed by Land (1977), but more modest. Land was

concerned, as we are, with computing information about surface properties of materials in a scene.
His objective was to determine the reflectance of regions using only the available intensity informa-

tion. Land reached his objective by assuming a greatly simplified Mondrian world-a flat, shadowless
world composed of regions of uniform reflectance. We prefer to deal with the natural world in its
entirety without unnecessary simplification, and instead limit our objectives. In this way we can

exploit the regularities in the world as assumptions or constraints in the solution of our problem. The

simple goal we will analyze, to reiterate, is just to determine when changes in an image arise from
one material's bordering (or occluding) another in a scene. We shall see below that the problem to be

solved in achieving our modest goal is still formidable.
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2 The Scope of the Problem

The problcem in achieving the proposed goal of finding changes of material (hereafter denoted by

the symbol M'1 ) is that any given image intensity can arise in many different ways, depending on

the particular processes in effect. Thus given a single intensity value in the image, it is generally not

possible to decide which of the many possible events in the world produced it. it can be said that the

act of imaging a scene, or projecting it into two dimensions, confounds the effcts of material changes,

our interest here, with the effects of other processes. These confounding events include shadows,

surface orientation changes, highlights. and variations in pigmeint density. Furthermore, the quest

for recovering Mf (material) changes from image intensities must succeed under a range of spectrally

different illuminants. A system that only worked properly given an illuiminant having the spectral

composition of the mid-day sun would be very limited. At dawn and dusk, when sunlight reddens, thle

system might fail.
1b llo rcuniflow accent is used in this paper to denotc ahsitaci prm'sV.w% it is inicttded to licp disuvittmn abmnit ptocc%,Ri

distinct from talk about simple ',ariabics or function.
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We can now summarize the problem that early color vision faces, if its goal is to discover material

chanSes:

The problem in determining where changes of material occur in a scene is that in the available image

intensity values, the effects of many processes may be confounded

In the remainder of section 2. a notational scheme will be developed. In section 3, a general outline

of the solution will be presented.

Notation. A notational scheme is shown in figure 1. Regions in the static image will be denoted by

X and Y. (The time variable will be ignored.) These letters will also be used to refer to regions in a

scene which are the inverse projections of the image regions. The context will make clear the correct

referent. The image intensity measurable in region X (or Y), say, as a function of wavelength, will be

denoted by the function Ix(N) (or Iy(X)). Note that Ix()) (or Iy(X)) represents all the information

available from region X: it is the continuous spectral distribution of image intensity from X (or Y), as

shown in the middle graph in figure 1. In section 5, we will refer to discrete approximations of lx(N),

which can be generated by sampling the image intensity from X at spectral points (XI,. .. , X,,). as

shown in the bottom graphs in figure 1. In discrete computations, Ijx will denote the image intensity

measured from region X at X..

Since many symbols are used in this discussion, a glossary is presented in table 1.

3 The Theme of the Solution: A Negative View

3.1 The Strategy

Given two spectral energy distributions 1x(?) and 1) (X). how might we determine whether they

arise from an M (material) change? Little can be said about the spectral nature of f changes; they

are essentially arbitrary. No simple equations can relate image intensities from two regions composed

of different materials. The major confounding processes--shadows (hereafter denoted §), highlights

(0), surface orientation changes (6), and changes in pigment density (P)-however, produce lawful

changes in the image. Simple equations can capture this lawfulness, as will be seen in section 4.

Suppose that by examining image intensities from two regions we could eliminate the possibility that

they arose from either an t. 6, , or P change. Since we are assuming the illuminat to bc spcctrally

invariant in a neighborhood, we would like to conclude that the change was due to a material change.
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A preliminary conjecture is thus proposed:

When a difference between the image intensities Ix(X) and I).(X') (taken from two image regions X

and Y) does not arise from one of the colqfounding processes A, Hl, 0, or P. then this difference between

X and Y is due to a difference in materials, or 9f1.

The conjecture above suggests a computational strategy of attempting to reject measurements of

image intensities as arising solely from shadow (S), highlight (ft), surface orientation change (b), or

pigment density change (P), the lawful confounding processes in a scene. Our rejection strategy will

be correct only if there are no confounding processes other than the ones mentioned. But, as will be

discussed later, if in the course of rejecting the presence of §, R, 6, and P. we also reject the presence

of any of a large class of other possible confounding processes, the strategy will be a powerful one and

the conjecture will be useful for practical purposes.

It is important to note that rejecting the presence of a lawful process is often much easier than ac-

cepting it. As mentioned above, lawful processes are associated with equations. These equations relate

quantities measurable in the image (constants in the equations) to scene properties (variables in the

equations) which are not directly measurable. Typically, these scene property variables (reflectances,

for example) are constrained to take values within a certain interval. As will be seen below, rather

than attempting to solve a system of equations (subject to constraints on the values of variables), it

is often computationally simpler to determine whether the system (with constraints) can be solved.

In this sense, rejecting a solution (process) is easier than accepting one. By analogy, disproving a

conjecture about number theory (some universally quantified equation or inequality) with a single

counterexample is simpler than demonstrating the thcorcmhood of the conjecture. 2

Here's a simple example. Consider the equations I, = JK and 12 = jK, where J and K are

variables, and l1 and 12 arc constants. If the variables J and K are constrained to have values greater

than unity, then a simple test can be made that might determine that the system has no solution.

Specifically, if min(Ij, 12) < 1, then there is no solution that obeys the cunstraintsO . Intuitively,
2Or course, rejecting the occurrence of a process or event is logically equivalent to accepting the occurrence of its
negation But usuall)' either a process or its complement, and not both, can be characterized mathematically. So the
logical equivalence breaks down in favor of practical considerations, such as describabilit) Intuitively, rejecting the
presence of a shadow is child's play compared to accepting the presence of a nonshadow. hlow could the class of Ill
(visually interesting) evcnL.-that-are-not-&hadows possibly be characcned? 'Ihat clas is certainly a peculiar collection
of odds and ends, including such discrse members as paths of fireflies and holes in the ground. Visual s)stems "don't
care" if they'rC ccePtin processes or rejecting negations of processes: it only matters to us when we chamcterize what
we think the asem mishl be doing

'(lcarl) the product of Ivo number% each greater than unity is greater thai unil And a number greater than unit)
ratisd to a poweLr greater than uinity i% also greater than unii. lhc rjcin.n eonduitiii nilu(ti, Itl <. I ir just thc
contrapomitive of the two statements above
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this decision about unsolvability is computationally easier than actually finding a solution.

3.2 The Strategy Applied to some Confounding Processes

Figure 2 illustrates intuitively how the rejection strategy will be applied. Each of the first three

panels (0, -A, ) show the effects (in a graph of image intensity versus wavelength) of a surface

orientation change, a highlight, or a change in pigment density in a planar patch of a single material.

(Shadow changes S are similar to highlights.) As will be shown below, the effect of a surface orien-

tation change is to cut down the direct illumination by a constant fraction. Highlight or gloss is a

situation of increased image intensity at all wavelength. (A shadow is the opposite.) Finally, pigment

density changes, such as the variations seen in the grain of wood, can be characterized as several light-

absorbing filters in sequence. The effect of a stack of filters is to reduce the available light according

to a power relation. (The concentration of a dye dispersed in liquid affects transmitted light according

to a power law more precisely.) What all these natural processes have in common is that they act

to increase or decrease image intensities across wavelength. Violation of those sorts of displacements

can be used to reject the presence of shadow, orientation change, gloss or highlight, or change in

pigment density. Therefore, if two spectral functions of image intensities are not related by one always

lying above the other, then the functions come from two regions that might be composed of different

materials. The lower right portion of figure 2 illustrates such a situation, which is a candidate for a

material change.

In the next section we examine simple models of the confounding processes. In section 5, we

address the problems: How many channels does a visual system require in order to reject the presence

of particular processes in a scene? What sort of computations with available image intensities allow

rejection of confounding processes?

4 The Physics Behind the Scenes

4.1 The Image Intensity Equation

When light is reflected from a surface into the eye, the image intensity I(N) depend on scvcial

factors. 'Ibc surface properties of the object interact with the geometry of the viewing situation and
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Figure 2. Three different relations are illustrated that can hold between two spectral functions of images
intensities from regions X and Y. At top (left), a multiplicative relation (surface orientation change) is
illustrated. At right is depicted an augmentative relation (highlight, for example). Bottom (left) is a power
relation, typical of pigment density changes. At rigrit is a change that is not an increase or decrease of intensity
across wavelength. Such a situation is a possible material change.

the spectral nature of the light source to produce image intensity.4 In the case of a matte surface5

these effects combine multiplicatively to yield the following image intensity equation:

I(N)= p( )E(0)jN -LR(8, 0) (1)

where p(u) is the reflectance or albedo of the surface, R(O, 0) is the bidirectional reflectance distribu-

tion function (see Horn & Sjoberg, 1979) which describes properties of the surface dependent on its

orientation with respect to viewer (0) and light source (e), and IN. L is the angular relation between

the surface normal, N. and the illuminant direction L. Any collection o" mukiple light sources is
4 l'echnically. 1(h) for a point r.y on the surface is called image irradinnce Image intensiy takes into account other

factors such as pupil site and luminance constant. 'Ibes details are not impohan to the argument here. and will be
omltl'd.

51tor specular surfaces. a diflerent image intensity equation holds. See Appendix I.

- . . . . . ... . . . . -
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Figure 3. How shadow-with-penumbra is cast. A) Between the full lit and filly shadowed regions. some
proportion of the source can reach the objeCt B) An (achromatic) image intensity profile is shown for the
surface.

eqtuivalent to a singlc sourcc (called here the "synthetic source") on unshadowed portions of surfaces

(Silver. 1980), so regardless of the complexity of the illumination, a single ftmnction E(N), together

with directions 9 and 0, will.. characterize the direction and spectral nature of the illuminant for

unshadowed surfaces.

Thei effect of many natural processes that affect images can usually be characterized simply as ac-

ting on onc or more of the multiplicative factors in equation (1). For example, a shadow corresponds

principally to a reduction of the illuminant E(X). Surface orientation changes correspond to to

changes in the JN. -1] term, and pigment density changes affect only the p(X.) tenm. (Highlight or gloss

requires that a specular term bc added to equation (1).) All of the processes discussed above can occui

in a region of a singlc material.

the imiage intensity equation, and what these confotunding processes have in comnmon that allows theit

rejection ena masse.
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4.2 Shadows

Suppose a shadow (S) falls on a surface composed of a single material, and furthermore, suppose

that the only changes across the surface are these due to shadow. (Specifically. there will be no

changes in surface orientation or variations in pigment density on the surface.) Then the shadow can

be described by the following equations:

Itit(X) = (Es(X) + ED(X)Ip(X) (2a)

I.haddX) = ED(X)p(X)

where p(?) is the albedo of the material. The image intensities, as functions of wavelength, from the

lit and shadowed regions are 1te(N) and ,had,(X), respectively. El)(N) represents a diffuse component

of illumination striking both lit and shadowed regions, and Es(N) is some additional synthetic source

striking only the lit region.6

If the illuminant is an extended source, like the sun, there will be penumbrae (see figure 3), and a

third equation must be included:

tp,(,) = [aE.i(X) + ED(X)]p(X) (2b)

where a is a constant between 0 and 1, and Ipe,,() is the image intensity (as a function of wavelength)

in some region in the penumbra. (The symbol Spe,, will denote shadows with penumbrae.)

4.3 Surface Orientation Changes

Suppose that two image regions X and Y differ only in their surface orientations. That is, assume

that X and Y receive the same illumination (no self-shading) and are composed of the same material.

'his process as been dentoed by the symbol 6. The patches X and Y that differ only in surface

orientation have respective surface normals Nx and N) which form angles 0x and 8y with the

Gif light is available from the shadowed region, it arises from some collection of sources According to Silver (1980). a
collection of sources is equivalent to a single source provided that they all illuminatc the same surface patch. We call
this synthetic source IJ)(X) Furthermore. this diffuse synthetic source acts as if it lies in the direction of the viewer's
eye (Ilorn. 1975). Next consider the lit region Again, by Silcr's proof. there is a single source that is equivalent to the
illumination reaching the lit region. tei's call this source , and ils direction L,. Since 'Ac can see the lit region,
we know that theie i some component of L,° in the direction of the viever So we can pcrfomi a simple vector
decomposition of the synthetic iluminant for the lit region into a component in the %iewers direction (so this component
i, identical to the s nhctic dill'use illuminant EUv(A) ahome), and sonic o'tir ,"oiponcmt LI) with a new direction
L, So in equatioii 12a) I"o(h) abbiretales a product of a teim representing the sliceiril ins of the illuminant, a
hlbhiis 'tliial ru.ll ,inee tenin and a surlae orienlition teri. 'Ailh the illuniii;int diictii I. 1in he t l o ', direction
Ilikewise. ,'.,(X) stands for the product of of the same throe terms ahoc. but in some s nthecic direction L5
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(synthetic) light source direction L. and angles Ox and Oy with the viewer direction V. Using the

image intensity equation (1), the expected image intensities from regions X and Y differing only in

surfliee orientation are:

IX(1') = p(?X)E(?X)[Nx LIR(OX, Ox) (3a)
Jy(X) = p(X)E0,)INy L]R(Oy, Oy)

where again IxQ) and Iy~lk) are the image intensities from regions X and Y as functions of
wavelength.

Both equations of (3a) have a pair of multiplicative terms not involving wavelength. Let fix

INx LIR(#x,,0x), and let fly be similarly defined. Equations (3a) can now be simplified with this

consolidation of constant factors:

IXO,) = flXP(X)E(Xh) (3b)
11)= fPyp(?NE(?

4.4 Changes In Pigment Density

The reflectance of materials is determined primarily by the density of a pigment in some embed-

ding layer of the material, and the thickness of the pigment layer. The embedding layer in leaves,

for example, is cellulose, and the usual pigment is chlorophyll. Some surfacms may be unevenly

pigmented. The grain of a wooden table provides a good example of a chanige in pigment density

across a surface. This sort of change will be labeled P.7

Several different laws relate changes in pigment density to changes in reflectance. (See Judd &

Wyszecki, 1963.) Kubelka and Munk (1931) formulated a law that deals with the thickness and

density of pigment on a solid background. Beer's law describes the effect of concentration of a dye

dispersed in a liquid on the transmittance of the liquid, or equivalently, the thickness of a series of

transmitting filters. Thfe laws all differ in their details, yet there are some themes common to both.

The pigmentation laws describe a siooih transition from an unpigmented state to a state of saturated

pigmentation. (Often, the unpigmented materials are white or grey, and darken as pigment density

increases. Caucasians are usually pale in the winter, and darken gradually during the summer if

allowed to frequent the beach.) More can be said about the smooth transition. Loosely speaking,

?1hbc difference between pigment density change% and changc-, of malcrial is importan. P' chinges are changes in the
density of a sivirle pipment in a single s~irl of crubidding malcrial: .0I changes are chiripcs between tmu dillererit
pigmcnLi and (or) two different embedding materials.
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the shape of the albedo function is preserved by the pigment density change. Two properties of the

change of the albedo function make the notion above more precise. First, for a material characterized

by Kubelka-Munk analysis or Beer's law, a change in pigment density affects the albedo function by

either strictly increasing or decreasing its value at all wavelengths. Second. two albedo functions of

the same material (but having different pigment densities) are related monotonically8 . The conditions

above will be called the normal pigmentation conditions, and pigmentation processes which obey them

will be called normal.

Beer's law (Wyszecki & Stiles, 1973) will serve as an example of a pigmentation law. Suppose X

and Y are two regions that transmit light through stacks of identical filters. Suppose further, that X

and Y have the same surface orientation, and differ only in the number of filters in the stack. Then the

image intensities Jx(X) and 1,(X) that we could expect to measure are:

Ix(X) =lp0 )j^"xE'(X) (4)

where p(X) is the transmittance of a thin filter, and , x and -n, are the number of such filters in regions

X and Y, respectively. Since the viewer-object--illuminant geometry is identical in X and Y, the

two multiplicative terms of the image intensity equation (1) that deal with scene geometry and do not

appear in (4) can be considered "absorbed" as a constant factor in E(N).

Two facts about equations (4) warrant attention. First, a power relation is described between the

reflectances of two regions of different pigment thicknesses. This is the simplest such pigment relation.

and can be considered as a base from which more complex laws develop. Second, note that regardless

of the function p(X). the first normal pigmentation condition holds. That is, [p(X)Px > [p(N]",

for all X, or vice versa. Since the illuminant and scene geometry are identical in regions X and

Y, the nornal pignentauion condition above is preserved in the available image intensities. Similar

relationships between pairs of albedoes will hold for more complicated pigmentation laws (Kubelka &

Munk, 1931), because such laws require monotonicity.

4.5 Highlights

Thc image intensity equation (1) only applies to matte surfaces. Highlight or specularity, a condi-

tion when a surface acts as a partial mirror, is a common confounding process. In a highlighled region

"Iwo sinle-ualued functions f and U are ntlaitd monotoical if f (x) > f(!,) implies (.i) > y(Iy) In particular, two
monotonicall) related functions hac their local minima and matima a he %.imc values in their domain
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image intensities are due to both a reflection of the light source, and a matte component due to the

albedo of the underlying material. Appendix I shows that if most of the illumination of a region is

due to the source that is reflected in the highlight, then the highlight H can be described as a process

that strictly augments image intensities at all wavelengths. That is, if the normal highlight condition

holds, the image intensity measurable in a highlighted region is the same as that of a neighboring

matte region plus some (always positive-valued) function of wavelength9 .Note this is identical to the

first of the nomialpigmentation conditions. Highlight differs from pigment density change in that it is

always a positive change, and it does not necessarily preserve the shape of the image intensity function

of wavelength from a neighboring matte regions.

5 Details of Process Rejection: Spatial and Spectral Samples

Our computational strategy is to examine image regions and to attempt to reject them as arising

from the action of a confounding process on a single material. How might rejections be made? If a

process is lawfil, as the major confounding processes are, then some system of equations characterizes

the effects of the process. Given measurements of image intensities, if there is always a plausible

solutionl' to the equations describing a process, then we can always mathematically interpret the

image intensities as arising from that process. When we can always interpret image intensities as being

due to a particular process, we can never reject the occurrence of that process. Whether or not there

always exist plausible solutions depends on the number of samples being taken. In this section we

examine the minimum information needed to be sometimes able to reject the presence of the major

confounding processes. We will answer the questions: What is the minimum number of spatial and

spectral samples needed to reject image intensiies as arising from each of the confounding processes?

How would increasing the number of samples increase the number of correct rejections?

(Spectral samples will at first be assumed to be taken at a single wavelength. In Appendix 11, it is

shown that essentially any sort of spectral sample preserves the results of the following sections, which

are derived using narrowband samples.)

9Since the word "highlight" denotes a region of greater brightness than surrounding regions, the normal highlight
condition ii reasonable and necesary to avoid mathematical anomalies such as "highlights" which are darker than
surrounding regions.

10A plow siw* solution to a set of equations is one which mssigns meaningful %alues to ph)sicl variables For example.
a silution %hich assgm a number greater thaii one to a vaiiable reprewnlig a reflccance is not ph)%icall incaingful
and must be discarded
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5.1 Rejecting the . Hypothesis

Impossibility of Rejecting S with One Spectral Sample. Suppose one narrowband

spectral sample is taken at some wavelength X1. Two image intensities can then be measured: 11x and

Iy, the intensities at X, in image regions X and Y (see fig. 2). Can we reject the possibility that the

only difference between regions X and Y is due to a shadow? Since either X or Y can be lit, and the

other in shade, there are two equations to examine. In more formal terms, we need to know if we can

rule out the existence of a plausible solution to either of two discrete versions of equations (2a):

Ix = (ELD + EIs)PI (5a)
1 1 Y = EIDPI

corresponding to X lit and Y shadowed, or

fix EIDPI(

II = (EID + EIs)pI (5b)

corresponding to X shadowed and Y lit. Note that P, is the albedo of the material at ), and Els and

ElD are the strengths of the synthetic and diffuse components of the illuminant.

A shadow interpretation is some solution to equations (Sa) or (5b) that assigns physically meaning-

ful values to variables. If the measured values of IIx and I, y can be shown to be inconsistent with

both equations (5a) and (5b), then there canot be a shadow interpretation. On the other hand, if any

values of 1ix and Iy yield a plausible solution to the equations, then there will always be a shadow

interpretation. If there is always an S interpretation, rejection is impossible, and we must resort to a

greater number of spectral samples.

Intuitively, we are given two measurements of image intensity at only one wavelength. We are

faced with the question: Is there any pair of image intensities that cannot be cinstrued as arising from

lit and shadowed portions of the same material? Given two measurements, one will be darker than the

other. The darker region can be interpreted as being a shadowed continuation of the lighter region. So

any pair of measurements can be construed as a shadow. TIherefore, there can be no rejection of the

shadow interpretation with only a single spectral sample.

The casual argument above can be made rigorous. Is there ever a possibility that both equations

(5a) aid(5h) will have no solution? First we'll consider solutions to equations (5a). One solution is

given as follows:
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Ew=8

Ps1= 6( (6)

where 6 is the parameter of the one-dimensional solution space of equations (Sa). (Two equations

in three variables almost always have a one-dimensional solution space.) This solution is acceptable

or plausible as long as all the variables take positive values, and pt E (0, 1). The latter constraint is

satisfied by restricting 6 to the interval (I, y, oo). Note that EID and p, are always positive, since 6 is

restricted as above, and the measurement 1, y is positive. Therefore all variables will take on positive

values if EIs is positive, or, equivalently, if lix > iy. So whenever Ijx > 1,y, there is a plausible

solution to (Sa). By the symmetry of equations (Sb), it is clear that whenever 1jy > 1ix, equations

(5b) will have a plausible solution. Therefore, there will always be a solution to either (5a) or (5b).

regardless of the values of measured image intensities. So there is always a shadow interpretation

for monochromatic measurements; the darker region can be construed as the shadowed one. Hence,

monochromacy is inadequate to reject measured image intensities as arising from shadows" .

Two Spectral Samples.

Perhaps adding a second spectral sample will help. Will samples at two wavelengths from each of

regions X and Y somefiates allow the rejection of the shadow hypothesis about the X-Y difference?

Or will any sets of measurements always have a shadow interpretation, as in the monochromatic case?

Intuitively, dichromacy should allow some rejections of the shadow hypothesis. Suppose that in the

first spectral sample, region X is lighter than region Y. Then the same ought to hold for the second

spectral sample if Y is to be construed as a shadowed continuation of the same material that composes

X. So if one region is lighter in the first spectral sample, but darker in the second spectral sample, we

probably aren't looking at a shadow. This follows from noting that in the case of shadow, both regions

reflect a diffuse component of illumination, while the lit region has a synthetic component in addition.

A more formal demonstration can be made, by rewriting the shadow equations (2a) in discrete

"171c claim that rnonochromacy does not allow shadow rejections only applies to the topc of" computations descnhc
here Of course there might be somc type or a'hronafl, oontputation. in~ohing. ., textute. that would allow (h(
rejectIo o( shadow

IL
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form for two spectral samples: IIX = (EID + EIS)pI
12X = (AD + AS)p2 (7a)
I y = Ejp
12Y = E2DP2

corresponding to X lit and Y shadowed, or

11x = EIDPI

2X = E2DP2 (b
Iy = (EID + Es)pj (7b)
12Y = (E2)D + ES)P2

corresponding to X shadowed and Y lit.

Once again, the left-hand side terms are the measured image intensities, and the right-hand side

contains the variables for which we attempt to solve the equations. Given any four measurements lix,

I, y, 12x, and I2y, will there always be a plausible solution to either equations (7a) or (7b)?

Consider first solutions to (7a). We have four equations in six unknowns, suggesting a two-

parameter family of solutions.

Below is a solution to equations (7a). parameterized by 6 and e:

EID " 6

F12D 6
l Y

p2 __ 2Y (8)

A~S = 6(2 _ 1
2XY

The constraints of the values of the variables are once again that p, and pj E (0, 1), and that all the

variables take on positive values. So extending the results.of the previous section on a single spectral

sample, it is clear that whenever both 1ix > Iy and 2X > 1'2y, there is a solution to equations (7a).

Symmetrically, whenever both 111, > 1,V" and 12.h > 12,%. there is a solution to equations (7b). So

there is a dichromatic rejection condition for shadows. If(11x > fy" and '1. > 12X) or (f1 y > 11x

and 12V > I2 ), there will be no plausible solution to Cqualiois (7a), nor to (7b), and the presence of!

shadow can be rejected.
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SPECTRAL CROSSPOINT

I

w XZI e "I tx

A1  At
WAIELENGTH

Figure 4. Rejection or § by aosspoint in plots from regions X and Y of image
intensity versus wavelength.

There is a simple geometric interpretation of the dichromatic rejection condition: § can be rejected

if the graphs of image intensity versus wavelength for regions X and Y intersect, or have a crosspoint.

Furthermore, it has just been proved that the crosspoint condilion is unique and miinal. It is minimal

in the sense that it involves two spatial and two spectral samples; no smaller number of samples

would do. It is unique in that, given two spatial and spectral samples, only the crosspoint condition

holding among the four measurements can accurately lead to a rejection of . Whenever there is no

crosspoint, a shadow interpretation, possibly wrong 12 , can be found. A final point. Given two line

segments (two spectral samples at two spatial locations yields two line segments in our system of rep-

resentation) there is only one topological property that they have: intcrsection (or non-intersection).

Fortunately, intersection, or crosspoint, has been shown to be a physically intcrcsting condition in

this problem, as well as a topologically interesting one. Figure 4 illustrates the dichromatic rejection

condition for .

12A *vng intrrprrinfion Ls one that asigns values to physical vanables that do not correspond to the actual valuc.
Interpretations of sensory data are discussed in more detail in Richards et at, 1931.
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n-chromacy. It is easy to extend the dichromacy result above to the general case of n spectral

samples (XI, ... , ,). Imagine taking pairs of thise spectral samples and plotting a line segment from

region X and another segment from region Y. If any pair of spectral samples yields a crosspoint (the

line segments intersect), then § can be rejected for the X-Y change. More formally, we can reject

n-chromatically if there exist j 4 k such that the line segment from ljx to l x intersects the line

segment from l4y to Iy. Equivalently, we can reject , n-chromatically if there exist j 3 k such that

(x - IY)(Ikx - AkY) < 0.

5.3 Rejecting the 6 Hypothesis

One Spectral Sample. The surface orientation change equations (3b) can be re-expressed as a

single equation:

Ix(N) fix
Iy(,X) = y (9)

Equation (9) describes a simple proportionality holding over wavelength for image intensities.

Clearly, if only a single spectral sample is taken at each of X and Y, a trivial proportionality will hold

between the measurements ix and 11-, regardless of their values. (That is. for all measurements of

image intensities, there are appropriate values .of #x and fly, so that a discrete version of equation (9)

holds.) Hence a surface orientation change cannot be rejected monochromatically.

Two Spectral Samples. Will a second spectral sample sometimes allow the rejection of image

intensities as arising from a surface orientation change? And if so, under what conditions? Equation

(9) can be rewritten in discrete form for two spectral samples:

11x fix
h Y fly
12 X 8v (0
2 Y flY

It is clear (by combining equations (10)) that we can reject the 6 hypothesis whenever

__ 2%. 12
II) ~V 1)

II' 1J (1
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Note that the nonproportionality condition above is narrower than the crosspoint condition that we

derived for shadows; a crosspoint allows the rejeftion of both shadow and surface orientation change

interpretations of image intensities.

5.4 Rejecting the P Hypothesis

In the preceding two sections, relationships among image intensities (at two spectral samples)

were derived such that the discovery of the relationship could be taken as evidence that certain con-

founding processes were not occurring in the image. The spectral crosspoint was the less strict of

the two criteria derived. In this section, a different tack is taken. First, it is taken as obvious that

monochromacy is inadequate to reject the presence of P. Next, it will be pointed out that a spectral

crosspoint is good evidence that the image intensities under consideration do not arise from a change

in pigment density 13 . It suffices to show (normal) pigmentation does not produce crosspoints. But this

follows immediately from the first of the normal pigmenlation conditions. Specifically, equations (4)

can be rewritten for two spectral samples as

h 1 (12)
2X =P'X

which implies (by the first normal pigmenlalion condition) that if , > 1, then > 1, or vice

versa. Therefore, if A > 1 and h < I (one of two possible spectral crosspoint conditions), then

the presence of a normal pigmentation process can be rejected.

5.5 Rejecting the ft Hypothesis

The presence of a spectral crosspoint can also be taken as evidence that no normal highlight is

present. Since a (normal) highlighted region has greater image intensity at all wavelengths than a

neighboring matte region, no spectral crosspoints can arise from such a pair of regions. (Also note that

shadow changes are formally equivalent to highlights, in that lit and higlighted regions correspond

to striclty augmentative changes to image intensities in neighboring shadowed and matte regions,

respectively.) Hence the spectral crosspoint allows the rejection of normal highlights.

"3 More p'cci cly. i will be shown a crmmpoint implics either (not 1') or (I' , but not a nomal pigmentallon prcc,.s)
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It
5.6 Rejecting Special Cases of ., 0, and f

Shadows with Penumbrae. In the event of an extended source, shadows with penumbrae
(.pen) can be rejected monochromatically (see Appendix 11), but it should be noted that

monochromatic rejection of the penumbra case requires three independent spatial samples, in con-

trast to the two spatial samples needed for dichromatic rejection of S (point source). That is, for sharp

(point-source-generated) shadows, two spatial and two spectral samples are the minimum needed

for rejection. For shadows with penumbrae, three spatial samples at a single wavelength suffice for
rejection. Noninonolonicily of the discrete plot of image intensity versus postion in the image at any

wavelength is sufficient for rejecting 4, (Nonmonotonicity is when three collinear spatial samples

are neither strictly increasing or decreasing. This is identical to the condition that the center spatial
sample of the collinear three has the greatest intensity, which cannot occur when the line passes

through lit, penumbra, and shaded regions.)

"Simple" surface orientation changes. A special class of 6 changes can be rejected with

a single spectral sample taken over three spatial regions. Let Oa-,tple be the subset of 0 changes

involving no inflections. b), ,,pe is similar to 4," in that both describe spatially monotonic processes.

Clearly then, Oes,,pte can also be rejected monochromatically using three spatial regions with the

nofnionolonicily test. (See Appendix 11, which treats the shadow-with-penumbra case, Spe.)

Highlights and Monchromacy. Consider three collinear samples passing through a normal

highlight such that the center sample is taken in the highlight, and the end samples are taken in

nearby matte regions of the same material. A luminance profile (at a single spectral sample) shaped

like an upside-down vee can be expected for our piecewise linear representation. Therefore,'a

monotonic luminance profile, or a vee-shaped profile, can allow the rejection of the possibility that the

three samples correspond to matte-highlight-matte regions.

5.7 Summary of Rejecting Individual Confounding Processes

In the sections above, it was shown that a single spectral sample was not sufficient (except in

special cases involving three spatial samples) to reject image intensities as the effect of a single major

confounding process, Two spectral samples, however, were proven adequate to sometimes allow

rejection of image intensities as the effect of a single process. The strictest rejection criterion occurred

with surface orientation changes: nonproportionality was shown sufficient for rejection (i f. The
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broadest criterion was the spectral cosspoint, derived from the shadow equations. Since shadow and

(normal) highlight are similar in being processes that allow any strictly augmentative change over

wavelength, the spectral crosspoint also allows the rejection of highlight. Furthermore, the crosspoint

was shown to be the unique and minimal rejection criterion for . The crosspoint is a special case of

nonproportionality, and hence allows the rejection of surface orientation changes as well. (And the

crosspoint is more secure than the nonproportionality condition in situations of noisy measurements

of image intensity.) Changes in pigment density are strictly augmentative (or subtractive) changes

over wavelength, and therefore cannot cause crosspoints. So the crossoint is sufficient to reject P.

Since each of the major confounding processes t, f,0, and P can be rejected dichromatically by the

presence of a spectral crosspoint, the crosspoint criterion for rejection of single confounding processes

is adopted.

5.8 Rejecting Combinations of Processes

The discussion above focused on what happens when a single confounding process occurs. But by

inspecting any photograph, it is obvious that arbitrarily chosen neighboring regions of the image may

depict elements of the scene which differ in pigment density, surface orientation, and shadowing. (In

particular, joint occurrences of b and § are common. Architecture provides examples in which one

face of a polyhedral structure shades another.)

How can the analysis be extended to cover instances of combinations of processes? Perhaps we

can restrict our attention to some subset of neighboring image regions in which material-change-

mimicking conspiracies among the confounding processes are unlikely.

Which Neighboring Image Regions should be Examined?. It would be computationaily

exhausting to examine all possible neighboring image regions for material changes. And unnecessary

as well. Material changes invariably produce with luminance discontinuities or edges in the image. If

finding material changes is the goal being pursued, there's no point in looking for them where they're

not going to be. That is, for the purpose of discovering material changes, "neighboring regions"

should be taken to mean regions separated by edges.

Can several confounding processes coincide at a single edge? As pointed out above, shadows and

surface orientation changes can occur at a single edge. But aside from this case of' self-shading,, it

is generally believed that at an edge, a single process predominates (Marr & lildreth. 1980; Marr,
1982).
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(In the case of self-shading, no crosspoint can occur. By examining the shadow and surface orienta-

tion change equations, it can be seen that a iinfoccurrence of s and 6 is mathematically equivalent

to an occurrence of S alone. And S changes cannot induce crosspoints. So self-shading cannot cause

crosspoints.)

5.9 Accepting M by Default

When a crosspoint occurs across an edge, we know it does not arise from one of our confounding

processes. If the reasoning above is correct, it is highly unlikely that such a crosspoint is caused by

a peculiar conspiracy among S, ft, 0, and P' across an edge. It is worth asking if we have fully

captured the range of possible confounding processes by our models of §, ft, 0, and P. All that could

be said was that a highlighted region had greater image intensity at all wavelengths than a nearby

matte region of the same material. The same is true for lit versus shadowed regions. And a slightly

more stringent condition held for pigment density changes. It is clear from the discussion above that

any process that acts on a scene variable(s) (that is a function of wavelength) by strictly increasing or

decreasing its value (at all wavelengths) can be rejected with the spectral crosspoint. Thus, when a

spectral crosspoint occurs across an edge, it is almost always due to a material change.

5.10 False Targets: Effectiveness of the Spectral Crosspoint in ft Detection

A word should be said about the theory of M detection presented here. If our characterization

of confounding processes is accurate, most spectral crosspoints across edges will be M changes.

Exceptions include instances of highlight and pigment density changes that aren't normal, and rare

(measure zero) coincidences of confounding processes at edges. So in signal detection language, the

false target rate of crosspoints in M detection is low; most crosspoints will be material changes.

As for the hit rate, it need not be the case that most M changes cause crosspoints in the image.

Intuitively, only about half of the material changes in a scene will cause crosspoints. This should

not be disturbing. The crosspoint computation is extremely easy, and provides immediate strong

assertions. Of course a full theory of M detection is likely to involve other spectral computations, as

well as nonspectral (textural) computations.
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6 Relation to Psychophysics and Neurophysiology

The theory we have presented begins with the physics underlying several scene processes affecting

image intensities, Simple analysis of equations describing the processes has shown the crosspoint

is the unique criterion for rejecting each of the confounding processes, and thus a good tool for

spectrally identifying material changes. But what has this to do with color vision? The implica-

tion of the results above is our crosspoint conjecture that biological visual systems interpret spectral

crosspoints as material changes.

Psychophysical Evidence. An interesting fact about human color vision is that it becomes un-

stable under isoluminance conditions (Evans, 1948). Boundaries defined only by a chromatic change

are weak, colors from one side of such a boundary are likely to invade the other. Color vision seems

to require luminance discontinuities for stability. It was argued (section 5.8) that the only place in an

image it makes sense to seek material changes is at edges. If color vision were concerned with the

detection of material changes, then it would be an efficient system only if its computational resources
were employed at edges. Besides, spectral computations carried out in arbitrary neighboring regions

would be difficult, if not impossible, since many confounding processes could be acting together be-

tween the two regions. The number of hypotheses to be entertained would become combinatorically

nasty (that is, all possible subsets of S. I/, 0, and P), and the biological value of enduring such

tedium is dubious.

Number of Spectral Channels. Biological color vision systems are usually di- or trichromatic

(Walls, 1942). Why are there no pentachromatic systems, say? The theory suggests an answer.

Dichromacy was shown sufficient to enable a system to make strong f assertions across edges.

Adding a third spectral sample increases the chances of finding a crosspoint. That is, trichromacy

seems to provide higher hit and lower miss rates in M detection than dichromacy. Why not add

spectral channels ad infinitum? The spectral reflectances of natural objects are almost always functions

that change slowly over wavelength (Krinov, 1971). (There appear to be rarely more than three

extrcmal points in reflectance function of wavelength.) It seems unlikely that a tetrachromatic system

would detect enough additional crosspoints to be evolutionarily advantageous.

Comment on Physiology and Neurophysiology.

Trying to design an operator to detect spectral crosspoints provides some insights into

neurophysiology. Although biological pholopigmenls are broadband (I)artnall.1962). Appendix IlII
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Figure 5. Designing an operator for detecting crosspoints A) A crosspoint. B) A "Land unit," a circularly

symmetnic operator that compares imag.e intensities at a single spectral sample (here short wavelength, or S).
over two spatial regions C) The S+EL+ crosspoint dctector. Two different L.and units. S and L, are
combined with a logical and across an edge. E'. A nonzero response indicates a crosspoint D)) The S+EL+

unit resembles the double opponent unit. See text.

shows that thc particular shape of the photopigments used for taking spectral samples, and their

degree of overlap. have no effct on the basic crosspoint finding.

The crosspoint (fig. Sa) is equivalent to the following inequality among image intensities:

(fix - l~y)(!2x 12y) < 0 (13a)

which is identical to

C(i)X- 1 I14(- 1 2. +h') > 0 13b)

Suppose wc desire a crosspoin operator that is circularly syenntric (fA) tessellation Cfficit, cy, say).

I.et the photopigments he S and L. having their respective t,S at short and long wavelengths (see
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5i. a). Equation (13b) can be rewritten:

(Sx - Sy)(-Lx + Ly) > 0 (13c)

where Sx denotes image intensity in region X viewed through photopigment S, and so on.

The operator depicted in fig. 5b is ideal for computing the (Sx - Sy) factor in equation (13c).

This sort of unit we call a "Land unit" since it was suggested by Land's (1977) retinex theory of color

vision. The Land unit has zero output in a homogeneous field, and maximum output when the center

receives more energy at short wavelengths than the surround.

Obviously, the firing of a single Land unit, even a maximal firing, does not provide information

about the presence or absence of a crosspoint. A single unit can only inform about events at single

spectral sample. Consider, however, the nonzero firing of a pair of Land units across an edge, as

shown in fig. 5c. The S Land unit's nonzero firing implies Sx > Sy; the L Land unit's firing implies

Ly > Lx. The conjunction, or logical anding, of the two conditions over and edge provides a test

for crosspoint. We propose, then, a crosspoint detector composed of the conjunction of two (spectrally

different) Land units on opposite sides of an edge. Note that without the requirement of an edge, this

unit might respond to gradations of image intensities due to the effects of confounding processes. We

call this operator an S+EL+ unit 14 .

Two further points should be raised about crosspoint detection with the SEL operator. First, the

unit shown in fig. 5c only detects the type of crosspoint shown in fig. Sa. If Land units are constrained

to have only positive response, as neurons are, a second type of unit, L+ES + . would be required to

detect the other type ofcrosspoint (fix < 1,y).

Second, a positive response of an on-center off-surround Land unit on one side of an edge implies

a positive response of an off-center on-surround unit on the other side of the edge. In fig. 5c, imagine

replacing the L+ unit on the Y side of the edge with an L- unit (off-center) on the X side. Suppose

the L- unit and an S+ unit, both on the X side of an edge, were logically anded in a single unit.

Such a unit might be sketched as in fig. 5d; it resembles a double-opponent cell, found in the retina

of goldfish and in the primary visual cortex of primates (Daw, 1972)15 . A final point should be
4 This unit can be compared to Marr and Ullinan's (1981) S+TS- unit for directional sclectivio. The iwo units ate
similar in that they have three component%. the outer two of which are "polar" forms of the same compuiaiion IS +

and S- diflcr in sign of contrast; S- and L+ are different spectral samples. Also, the ccnter components of the two
units perform more sophisticated computations than the outer components.

15 "he unit depicted in ip. 5d may he misleading in suggesting an arithnetic sum of two I and uniL. rather than a hogical

anding Only ictailed qualtittive ncuroph)siological studl of .tich double-onpponcni units can rc cal the romlputition
they perform.
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made about the double-opponent operator. It does not produce maximum output when it precisely

straddles a edge with spectral crosspoint. The operator's largest response occurs when it is slightly

offset from the material change boundary. This is reminiscent of properites of the V2G convolution
operator' 6 for luminance discontinuities (Marr & Hildreth, 1980).

7 Conclusion

Color vision systems evolved to solve certain problems in making sense of natural images. Natural

images are complicated things, however, caused by a myriad of processes. While first intuition might
be to study color vision over a simplified or restricted domain, we feel much can be understood by
considering the more complicated natural domain. Certain regularities emerge from the confusion of
the world, and these lawful relationships can be exploited as assumptions in the solution of sensory
problems. Even given assumptions about the physics underlying scenes, natural images are still com-
plicated. While ambitious goals can be successfully pursued in limited domains (Land, 1977), we
feel that generally, more modest goals are appropriate to complicated domains. Our simple goal is to

detect changes of material in an image using spectral information.

One unusual characteristic of material changes is that they are unconstrained. Since an uncon-
strained process cannot be sought directly (for what equations could we seek solutions?), we resort to
inferring material changes by rejecting a class of processes that confound spectral image intensities.
Rejecting the presence of a lawful process, it was pointed out, is often computationally much simpler

then solving explicitly for the variables of the process.

First, a computation based on a single spectral sample was sought that would allow, at least on
some occasions, the rejection of the presence of one of the major confounding processes. But it
was shown that no such computation exists (of the type discussed here); all neighboring pairs of

regions look like lit and shaded portions of the same surface when viewed motiochromatically. (It was
shown, however, that special classes of confounding processes S, and OAsimpe, as well as fl, could
be rejected monochromatically using three spatial regions.) Next, it was found that adding a second

spectral sample (for two spatial regions) did allow us to sometimes be able to reject the presence
of a confounding processes. The spectral crosspoint was the broadest criterion derived, and it was
shown that its discovery allowed the rejection of each of the confounding processes 6 i, 8, and P'.

(Furthermore. the spectral crosspoint was proved the unique and minimal criterion for the rejection
16 fl Lplacian of a two-dimensional gaussian
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of t.) It was argued that by restricting the search for spectral crosspoints to edges, that complications

arising from the joint occurrence of several con'founding processes were unlikely. (And if several

confounding processes did occur coincidentally, a crosspoint could only be generated under very

unusual circumstances of illumination.) The spectral crosspoint allows us to say with great confidence

that image intensities do not arise from §, fH, o, P, or any of a large class of possible confounding

processes. The simultaneous rejection of this large class of processes allows us to infer with great

confidence that a material change is taking place. Our crosspoint conjecture is that biological visual

sytems interpret crosspoints as material changes.

When no crosspoint occurs, more sophisticated computations arc still possible (Richards, Rubin

& Hoffman, 1981). The crosspoint strategy is not foolproof. While material assertions will be al-

most always correct, there will be many missed material changes. Not all material changes produce

spectral crosspoints. A good strategy for visual systems would be to locate the maximum absorption

frequencies of their photopigments in order that a maximum number of crosspoints be detected17

. A study of the reflectances of natural objects could perhaps reveal if biological photopigments are

located in wavelength in such a manner as to maximize the detection of crosspoints in an organism's

environment.

Finally, it was shown that an operator for the detection of crosspoints, constrained to use only

simple arithmetic functions, to output only positive values, and to be circularly symmetrical, is the

S+EL+ unit, which performs a logical and of two spectrally different units across and edge. The

SEL unit resembles the double-opponent cell commonly found in biological color vision systems.

APPENDIX I

Details about Highlights

The image intensity equation (1) does not apply to highlight. Highlight occurs on certain surfaces

when two conditions hold. First, the viewer direction, surface normal, and illuminant direction must

be approximately coplanar. Second, 4 ' 0; that is, the angle of incident illumination must be nearly

equal to the angle of reflection to the viewer. When the two conditions above hold, certain materials

will display mirrorlike qualities, and the illumination source will be imaged on the surface. Let

Eeou.rr,() be the source that is imaged in the highlight. We can expect the following image intensities

IT AIso, the pholopigmen. %hould be located to minimize "doublecrossings." ' situations in which a pair or complementary
and cancelling cro silmts occur betwevn the qpectral sample points Such situations would cau.sc material changes to be
mised.

'- i
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from two neighboring regions of the same surface orientation that differ only in that one region has a

highlight:

matfe(X) ---(Eouce(X.) + ,jth.r(h))P(X)

Jhighylght(X) -- E.ure(X,) + (I - 6)(EAource(X) + Eoth.(O))P(h) (15a)

where lgate() and JaIghi,1,hi,) arc the image intensities expected from the matte and highlighted

regions, and Fothr(XK represents all illumination other than the source E.o, 0... (X) reflected in the

highlight. Note in the equation for the highlighted region that there are matte and specular com-

ponents (Evans, 1948; Horn, 1977) in some linear combination determined by fraction 6. The specular

component is just some coefficient multiplied by the source; the albedo plays no role. The matte

component involves all illumination, not just the direct source, as well as the albedo p(),) of the

material.

Next, note the highlight equation can be rewritten as follows:

Jhighlight(h) = 6L( --)k+) (15b)

where L(h) - [Aoou~ce()) + EothEr()). Therefore, the highlight becomes a purely

additive process whenever L(h) > 0. We shall call this condition the normal highlight condition. It is

equivalent to the following:

> E(c)+(o+ h)

for all h in the visually useful range.

Since reflectances of surfaces usually have maxima around .7 (Krinov, 1971), the ,onnal highlight

criterion above is, loosely speaking, that the source provide a little more than twice the illumination

than the diffuse light. Normal sunlit scenes will obey this criterion.

APPENDIX ii

Shadows with Penumbrae (,,,): Rejection with One Spectral Sample

Here we seek to rule out the existence of a solution to either of the following discrete equations:

I,x = (E 1, + El n)pl

!1, = (aE,.j. + Es ))p, (1ea)

l1,z = EIf PI
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SPATIAL NON-MONOTONICITY

MCI z

SPATIAL POSITION

Figure 6. Rejecting .. by the nonmonotonicity of die discrete plot of image intensity
versus spatial position at some wavelength.

where X, Y and Z denote three collinear spatial regions being tested for their correspondence to lit.

penumbra, and shaded regions, respectively, of a shadow with penumbra, or

11X = EIDPI
Ity=(aEs+ Ew)pl (16b)

Ilz = (Eis + EV)pI

corresponding to the other case that Z is the lit region and X is shaded.

A solution to equations (16a), parameterized by 6 is given below:

EID = 6

lh,z

6
Eis =6( / ' x .- l)(17)

l,v-II,,z
l,x - l,,z
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The constraints are that all the variables be positive, and a E (0, 1). Eis is positive if t.3 - I > 0

Now the only interesting restriction is that a E (0, 1).

a > 0 implies 11,y - Ii,z > 0 implies 11,y > 11,z

a < 1 implies 1 ,x - 1 ,z > I,y - ,z implies ll,x > l,y

Therefore, any violation of the restriction Ia,x > Ii, y > 11,z implies the unsolvability of equa-

tions (16a). By the symmetry of the alternate equations (16b), it is clear they provide the restriction

ltz > Ih,y > 11x. The pair of restrictions from (16a) and (16b) together imply that the three

collinear image intensities must be either strictly increasing or strictly decreasing; that is, they must

be monotonic. This rejection condition of nonmonolonicity is illustrated in figure 6. and can be

summarized as follows:

If the discrete plot of image intensity versus position across the §,ren candidate is nonmonotonic,

we can reject ,pen . Fquivalently, we can reject §pen if (Ii,x - II, Y)(I, Y - Itz) < 0.

It is clear that with additional spectral samples, the nonmonotonicity of the discrete plot of image

intensity versus wavelength al any wavelength is sufficient to reject ken

However, in practice, there is a problem with the type of operator suggested by the theory: at what

scale should triplets of spatial regions be examined for nonmonotonicity? Shadows-with-penumbrae

can occur with large variations in spatial extent in images. Should a whole range of triplets be ex-

amined? The computational complexity of such a task should make one wary of it. We take this scale

problem to imply that. for practical use, the crosspoint condition is preferred.

APPENDIX III

Broadband spectral samples cannot induce crosspoints.

It will be shown that a crosspoint cannot arise in P. b, or ,§ situations from an overlapping of

samples.

11 Assume the change from X to Y is due to one of the confounding processes. Therefore, the

continuous spectral energy distributions .x(N ) and I) (h) do not intersect. (Otherwise the proof in

soction 5.1 could be shown wrong by taking samples straddling the intersection.) Assume, without loss

of generality, that IX (,) is always greater than Iy(N,).

21 Assume that our two spectral samples will be measured by "photopignien&" PI and P2 where

each P is simply a function mapping some wavelength interval Into the unit interval (0, 1).
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31 The sample measured at Xi in region X, Sx, and in region Y, Sy. are defined as follows.

k 'Sir -.k l()iX

where X,2 > ),it and the interval NI, k2) is the range of wavelengths over which the
"photopigment" Pi is sensitive.

41 Sx > ,-Y, for all i, follows directly from the fact that Ix(X) > Iy(N), for all X.

51 Therefore, spectral crosspoints cannot be induced by overlapping spectral samples.
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